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Excitation energy transfer in condensed media
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We derive an expression for resonance energy transfer between a pair of chromophores embedded
in a condensed medium by considering the energy splitting of the chromophores from their resonant
excited states. We employ time-dependent density functional response theory in our derivation. The
linear response theory treatment is rigorous within the framework of time-dependent density
functional theory, while in obtaining the energy transfer coupling, the standard first-order
approximation is used. The density response function for the medium, which can be replaced by the
macroscopic dielectric susceptibility, enables the inclusion of the medium influence on the energy
transfer coupling between the donor and acceptor. We consider the Coulomb coupling, and
determine that our result is isomorphic to the Coulomb interaction between two charge densities
inside a dielectric medium. The isomorphism we found not only provides a general and useful
expression for applications, but additionally offers a basis for the extension of the dielectric
response model to energy transfer coupling, which has been implicitly used earlier. An illustrative
model shows that for two separated molecules, the medium adds a dielectric screening effect to the
Coulomb coupling of their transitions. However, if the two molecules are so closely spaced that they
effectively reside in a single cavity, the medium can enhance or reduce the strength of the coupling
depending on the orientation and the alignment of the two chromophore200@ American
Institute of Physics.[DOI: 10.1063/1.1338531

I. INTRODUCTION Energy transfer coupling is traditionally described by
two different mechanisms: Fster dipole—dipole coupling

in which the excitation energy of one chromophore is passe r‘d the Dexter exchange couplifigThe former has aR °

to another through an interaction between the two. EET is ofiStance dependence and the latter has an exponential depen-
fundamental importance in keeping and utilizing the energ;fience- The I|_m|t of F_r:ster theory and its generalization have
of absorbed photons. The best illustrative example of thi©ften been discussdth Refs. 3 and 6-10, for examplerhe
process is the photosynthetic light harvesting event, in whiciliPole—dipole coupling scheme is not a good approximation
200—300 molecules serve as solar collectors whose functiol@®’ chromophores that are closely spaced in a protein matrix
is to transfer excitation energy to the reaction center wher@r other media, or when on@r both of the transitions in-
charge separation occurs. Most, but notaflpf the theoret- ~ volved is dipole forbidden. The overall Coulomb interaction
ical studies of such systems model the pigments in vacuunijetween the two transition densities must be calculated ex-
without considering any influence of the surrounding me-plicitly in these cases, and this seems to provide a satisfac-
dium. This is not because the effects of the medium on EETory description of the systems studi€d. However, it is

are known to be minor, but rather due to the lack of compreoften assumed in such calculations that the donor and accep-
hensive and yet solvable expressions for such applicationsor chromophores are in vacuum, and thus the role of the
The present work develops such an expression in the fl’am%urrounding mediunfprotein matriy in EET is not clear.

work of time-dependent density response theory, which will  EET has been treated with a classical formulation in
help us to understand the role of the surrounding solvent o§jtyations in which planar dielectric interfaces are
medium (e.g., the protein matrix in the case of photosyn-nearhy!'-13Chanceet al*?treated the transition dipole as

Electronic excitation energy transfdeET) is a process

thetic light harvestingin the EET process. a harmonic oscillating dipole with dampiritp properly ac-
count for the lifetime. In this case, the dielectric medium

3Electronic mail: grileming@Ibl.gov interacts with the oscillating transition dipoles, and the ef-
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fects of the medium are described using classical dielectrioecessary in the formulation, the general expression we ob-
theory. tain should be useful in a variety of applications.
Quantum electrodynamio®QED) theory offers another

means by which to describe EET with the inclusion of the

medium influeng_e. Th.e Hamiltonian for thg inter_action be-|| EXCITATION ENERGIES IN TIME-DEPENDENT

tween the transition dipoles and the quantized displacememMgNS|ITY-FUNCTIONAL THEORY

field can be properly written within QED, and dipole—dipole

resonant energy transfer can be derived from first One useful application of TDDFT is to calculate the ex-

principles*~1° Juzelinas and Andrew$'® used this ap- Ccitation energies of a system by solving for the poles of the

proach to consider transition dipoles embedded in a dielecslensity response functiasusceptibility.*** This approach

tric medium. The result in the near-zone lingithere mol-  is formally exact except for the use of approximate time-

ecules are Separa‘[ed by a much smaller distance than tﬁ@pendent EXChange-Correlation functionals in the calcula-
i iallv Ester's di tion. The TDDFT linear density responstpV(r,t) [i.e.

wavelength of the photonis essentially Frster's dipole— y responsi’(r,t) [ie.,

dipole coupling scaled by a prefactor. This prefactor consistérst order changes to the diagonal elements of density matrix

of a screening contributione( *), multiplied by the square p(rz,lr’,t) of the electronkto the perturbatiow (r,t) is given

of the local field factof[ (e, +2)/3]?}, wheree, is the opti-

cal dielectric constant of the medium. The prefactor is de-

fined in this way regardless of the orientation and alignment 5P(l)(r:t):f dt'J a3 x(r,t,r" Yo (r' b)), ey

of the two transition dipoles. Agranovich and Galanin ob-

tained the same prefactor in 1982 from basically the sam

considerations in a classical thedrfyEffects due to higher hnesh i teractingref : basi
transition multipoles have also been treated within the QE ohn—Shamoninteractingreference systejas a basis, one

framework!® These works assumed that the chromophore%an write the matrix equation equivalent to Etp within the

:22
were small and could therefore be treated as point sources grauency domairt
A(w) B(w) {1 Om spV(w) }_[é\/(w)

multipoles embedded in a dielectric medium. QED was als } 5
Blw) Aw) “lo —1[l6pV*(w)| " ov(w)] @

gvherex(r,t,r’,t’) is the response function of the system.
Using the particle—hole and hole—particle transitiginsthe

recently applied to dipole—dipole energy transfer coupling
and van der Waals interaction near one or two planar dielec-
tric interfaces’ " The authors found that, depending on the Where

orientation and molecular alignment, the intergction cpulgl Aiaa.ibp= 0upj Oan(€aa— €ia) — Kiaa jpp(@), 3
either be enhanced or suppressed from that of interaction in
free space. However, the complexity of the boundary-value Biaa,ipp= ~Kiaa,jops(®), (4)

problem in this approach has made further investigation ognd Kiaa,jbp(®) is the Fourier transform tot(-t’),
more general casddifferent geometriesrather challenging.

The classical theory and QED near-zone limit ap- Kiaa,jbﬁ(ti'):fdrfdr'ﬁﬁfa(f)d)aa(f)
proaches are similar in that the effect of the surrounding

medium on the energy transfer coupling is equivalent to the 1
7 HOxe(r i, t)

interaction energy between the two oscillating dipoles medi- X Ir=r']
ated by a dielectric description of the surrounding matrix.
Since the classical theory approach starts by describing the X gb,-,;(r’)dz’gﬁ(r’), 5)

:_ran5|_tt|qn d'pOIeS(Slenf't'e$ ads o§fC|tIrI]at|ng dlpolei(hdznsr | where{ ¢, ,®.,} are the Kohn—Sham molecular orbitals of
leg), it is reasonable to wonder if the same method wou he system(indicesi,j,..., areused for occupied orbitals;

hold for a quantum mechanical description of the transitionsa,b,___' are forvirtual orbitals, while Greek letters indicate
Limited by technical complexity, the QED approach does nmspin state and gyo(r,t;r',t') is the exchange-correlation
provide such a solution generally. kernel:
We have developed a general theory for resonant energy )

transfer coupling without explicitly treating the transition di- (b= o“AXCp]

pole moments as oscillating dipoles. We obtain the EET cou- Oxet LT Op (1) dpg(r',t’)”
pling for a pair of chromophores with resonant excited states The terms inside the curly braces in H@) constitute
by finding the energy splitting when the interaction is turnedthe matrix representation of (r,r’, ), the inverse of the

on, usinz%_zgime—depe_ndent density functional = theoryyensity_density response functigir,r ’, ). One can show
(TDDFT).” TDDFT is a formally exact theory within it the time-dependent Schtinger equation that the re-
nonrelativistic quantum mechanics and it allows us to INCOrgnonse functiory has poles at the excitation frequenciétn
porate the effect of the surrounding medium without anyappjication we simply solve for the frequencies that lead to
additional assumptions. Our result corresponds to the neaggrq in the inverse response functipn® of the system, i.e.,

approximation for transition densities. Moreover, since we

do not explicitly use a multipole expansion in the present Alw) B(w) (X):w 10 (X)
work, and the need for specific boundary conditions is not B(w) A(w) 0o —1/\Y)

(6)

(7)
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where X and Y are vectors representing the change in the o Apa\( Xp
density matrix 5p'"). The solution to Eq(7) is a set of (Xp, = XA )<A A ) +X
eigenvalues and eigenvectors. The eigenvalues are the exci- ¢, = AD_TAAL TR (12
tation frequencies and the eigenvectors describe, to first or- B (XI +XT)( T SDA) Xp
der, the transition density of this excitation. The adiabatic D= AN Sap T /1 EXa

approximation is often used in applicatiaim Refs. 22 and
25, for examplg which ignores the memory in the response
of electrons. The matrices andB are no longer functions of
o within the adiabatic approximation. Our result dasst RA=Hw,—o_)]=X ApaXa— 0oXpSpaXa. (13)
rely on such an approximation. However, for simplicity of
notation we drop explicit dependence onin the following
derivation.

The energy transfer couplingalf of the energy splittingis
therefore obtained to first order as

The first term in Eq(13), according to Eq(3), contains
only terms involving the coupling matrik that couples tran-
sitions inD to those inA:

Kino o5~ fdrj dr' 12192, (1)
Ill. EXCITATION ENERGY TRANSFER IN VACUUM

We require an expression for energy transfer coupling in % +Foxe(rr o) | ¢ )¢ Ar'),
the framework of TDDFT, so let us consider a pair of donor |r r| 18
(D) and acceptofA) molecules having resonant excitation (14)

frequencies when there is no interaction between them. This D(A)
condition can be fulfilled by the high density of nuclear Wherei¢i, '} are the Kohn—Sham molecular orbitals [of
states created by intra- or intermolecular vibrations in eithef®” A a}nq 9xc(rr',w) is the Fourier transform of
condensed phase systems or systems of large molecules $c(t:7",t") defined in Eq.(6). Contracting the matrix
the gas phase. We can adapt the Condon approximation tgpa With vector Xy (XandY of systemM), we can rewrite
separate such nuclear coordinates from our electronic déhe terms in Eq(13) using (diagonal transition densities
grees of freedom. [pM(r) M=D,A]. Such transition densities are linear com-

The coupling strength between two such resonant statddnations of products of molecular orbitadsy," (r) ¢3(r),
is half of the energy splitting when the interaction betweenith the coefficients given by the vecti (X andY vectors

the two molecules is turned on. We rewrite Eg), for sim- of systemM). Transition densities are in general one particle
plicity of notation, as density matrices that should be denote$§$r,r "). We use

the term “transition densities” in the present work to denote
AX=wIX, (8)  the diagonal element of the one particle transition density
matriceSpI,,(r)EﬁI,,(r,r). The energy transfer coupling in
vacuum is therefore

X 1 O
Y); I:(O _1>. 9) ferdr’ 5 (r)

The orbitals ofA generally overlap with those @ and the

where

A B\
A_BA' X=

overlap matrix is denoted aSp,. Equation(8) then be- X ergxc(r,r’,wo) pA(r’)

comes
(-ADD ADA) Xp ( 1 SDA) Xr;) 10 _“’OJ drpg* (r)pa(r). (15
AAD AAA “ SAD T XA . ( )

Equation(15) is a density functional version of the energy

Consider a pair of transitions, one fr(transition frequency transfer coupling expression, which is usually derived from
wg, With eigenvectoiXp) and the other foA (wg,X,), that  the configuration interaction with single substituti¢@lS)
are resonant in excitation energy when the two molecules ar&ave fUﬂCUOHS based on a Hartree—FdelF) ground state
isolated. The transition frequencies when the interaction betesult?® To make a comparison, the first term on the right-
tween the two molecules is turned on may be determined b§and siderhs) of Eq. (15) is divided into two contributions:
considering such an interaction as a perturbation. The twihe integration term with i/—r’| is the Coulombinterac-
transition frequencies then become ,w_ after including tion, while the other term witlgyc arises from thexchange-
the perturba‘“on with zeroth-order e|genvecm$ X _ that correlation effect between the transition density DfandA.
are, up to a normalization factor, due to the overlap of theThe former resembles the fer coupling mechanism if the

(unperturbeyl Kohn—Sham orbitals between the two mol- dipole approximation is used for the transition densities, and
ecules, the latter is similar to the Dexter exchange mechanism, ex-

cept that the correlation of the electrons is now effectively
Xp included by the exchange-correlation kernel. Such correla-
Xi:‘72< +X,/" tion effects on EET are not available from the HF-CIS ap-
proach. In addition, the second term of E#j5) shows how
The (first-orde) perturbed transition frequencies are then the orbital overlap of the two molecules contrib-

11
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utes to the energy transfer coupling. This overlap contribuehange in the EET coupling which consists of Coulomb,
tion to the EET coupling has exponential distance depenexchange-correlation, and overlap terms, as discussed above.
dence and has been suggested to be a more importaBhne can perform the electronic structure calculation with a
contribution than exchange coupliAg. model Hamiltonian for the solvent to account for such an

effect. We have proposed such a model in earlier viorK,

and there are a number of similar approaches discussed in the
IV. EXCITATION ENERGY TRANSFER IN A literature(see, e.g., Refs. 31-B3WNe focus on the contribu-
CONDENSED MEDIUM tion arising from the third term in Eq18) in the present

We next consider the effect of a condensed medium oNvOrk. This term is an additional contribution, with no corre-
energy transfer coupling between two solute molecules. wé&Ponding term for the(g};mplmg in vacuum. Let us call the
rewrite Eq.(10) with additional solvent transitions, treating third term of Eq.(18) Jpx and, for purposes of discussion,

D and A as the systenS, and calling the surrounding me- "égard it as the solvent modification term.

dium bath,B. IBR=XpApp(0Ts— Ags) ' ApaXa- (20)
(ASS ASB)(XS :w(Is O) XS), (16)  Therefore, in terms of transition densities, the above expres-
Ags Agg/ | Xe O TIg)\ Xe sion for coupling becomes

sions.

We ignore the effects caused by the overlap of the
Kohn—-Sham orbitals of the medium and the system in writ-
ing Eg. (16), and focus on the solvent influence on EET
coupling through the Coulomb and exchange-correlation in-
teractions between the solvent and the medium. Equation
(16) can be transformed into an effective equation for the
system dimensions only by the standard partition
techniquée’® The effective equation for the system transitions
is

whereQ is a zero rectangular matrix with appropriate dimen-
Jg';g:f drf dr’f dr"f dr”pg* (r)

1

—r,|+gxc(r:r/))

X
=

1

w—w

X

> pe(r’) pE*(r”)}
B B

X

1 "oem Toemy Trwm
|r//_r///|+gXC(r n ) pA(r )pA(r )

Asst Asg(0Tg— Agp) 1 Ags]Xs= 0ZsXs. (17
[Ass “SB B~ BB sl Xs sXs - :f drf dr’f dr”f dr pT* (1)
The transition frequency of the solute molecules is usually

far removed from those of the solvent in cases where the 1

absorption of the system can be observed and assigned. The X —,+gxc(r,r’))X§(r’,r”,w)

inversion of the matrixoZg — Agg should therefore exist and r=r']

be well defined for virtually all applicable cases. Equation 1 T

(17) is then an effective equation to solve for the excitation X m+9xc(r",f”’))PA(f"’). (21

energies of a solvated system. The major result in the present
work is obtained, as described below, by realizing that thevhere yg(r',r”,w) is exactly the density—density response
term (wZg—Agg) ' in Eq. (17) is actually the charge den- function for the bath. The density—density response function
sity response function of the bathg(r,r’, o), in its matrix ~ describes the first-order response of the charge density of the
representation, according to E@). We can substitute this bath(atr’) when a time-dependent external perturbatios
quantity by the bulk susceptibility function of the solvent, for cillating at the solute transition frequenay) is applied(at
purposes of calculation, in applications in which the molecu+"). Macroscopically, this response function for a condensed
lar details of the surrounding environment are not importantmedium can be described exactly by the dielectric response.
The energy transfer coupling in the presence of the solSuch an approach is similar to continuum models for sol-
vent is vents in electronic structure calculatiofsee Refs. 29-34,
for example. The functional form of the dielectric suscepti-
Ioa=XpApaXa~ 0oXpSpaXa bility is kEIOWH for many cases and numerical solutionspare
+XT Aps(0Zs— Ass) LAsaXa. (189  available for general situatiort§:*’ _
) o o Equation (21) can be viewed as an expression of the
We have included the _contrlbutlon arising from the overlapyansition density of the donolpl(r), and the operator,
of the Kohn—Sham orbitals between the donor and acceptol|y |+ g, (r,r'), creating an electric potential as an ex-

which can be obtained by replacing in Eq. (17) as the  ternal perturbation for the solvenB. Further, the density

corresponding matrix in Eq10): response arising from the solvent, due to the perturbation, is
T  Spa then coupled with the transition density of the acceptor,
Is= ( S I ) (19 (p}), to yield a modification in the donor—acceptor coupling.
AD

This result is similar to two real charge distributions inter-
The solvent modifies the coupling through all three terms iracting with each other in the presence of a solvent. Thus we
Eq. (18). The solvent modifies the electronic densities of thehave now transformed the problem into a more familiar situ-
two molecules in the first two terms of E(1.8), leading to a  ation in which the transition densities interact with the sol-
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vent through the Coulomb and exchange-correlation poterand e(w) is the dielectric response of the solvent at the fre-
tials. However, instead of using the static response propertieguency of transition(w). The solvent modification to the
of the solvent, the optical dielectric response at the transitioi€oulomb coupling is

frequency is used. To the best of our knowledge, this is the

first time such a general isomorphism between EET coupling “”)(Coul) J drPA PP (1)

and interaction between real charge densities has been estab-

lished without explicitly using oscillating charges or dipoles S g (+1)(e(w)—1)
for the transition, and without the limitation of a particular =— D
geometry. =0 m=—1 21+1 e(w)l+e(w)+]|
The results in Eq(21) can be divided into four contri- . |
butions as a result of the two interaction kern@sulomb or X drpa(n)r 1YY (0, 6). (25

. . . >
exchange-correlatigrcoupling the medium and donor or ac- e

ceptor. Coulomb coupling is much larger than exchange- The direct Coulomb coupling(in vacuum between
correlation couplings in many cagé<’ (for example and is pE(r) and pI\(r) is, using the same multipole expansion
an important feature of the reaction field models we havdechnique,

developed in Refs. 29 and 30. The term with the Coulomb— o

Coulomb kernel is th_us _expe.cted to be the most important Jo A(Coul)= E 2 Q|m

among the four contributions: 2' +1

xf drpA(n)r =Y, (0,6). (26)

Ji(Coub = fdrf dr’ fdr”f dr”p* (1) —— . S
|r r| Comparing expressions in Eq&5) and (26), and as-
suming that transition densitie%(A) are not affected by the
x| > pa(r!) E*(r”)} solvent, we find that the different integration regions in these
B equations do not make a significant difference since we focus
1 on the case where the donor and acceptor molecules are
meA(r”’) (22 separated by some solvent. In this case

Il Coul)= I3 A(Coul) + ISW(Coul). (27)

We present two illustrative examples below in order to fur-So for eachl, there is a reductiorinegative factor of (I
ther understand the physical implication of our result. We+1)[ é(w) —1]/[ (w)l + €(w) +1] multiplying to the corre-
solve for the Coulomb coupling and the Coulomb—Coulombsponding terms in the summation for the solvent modifica-
contribution [Eqg. (22)] in medium modified EET coupling tion componentJI(m)) of the coupling, reducing the magni-
for each example. tude of the overall coupling in the medium. The screening
factor for the final coupling strengths ranges in general from
3[2e(w)+1] for =1 to 2[ e(w)+ 1] asl| approaches in-
Let us first consider the situation where the donor andinity. (For transition densities there is no monoppleor a
acceptor are embedded in and separated by solvent mddelvent with e(w)=2, for example, such a factor ranges
ecules. Each chromophore has created a cavity in the bulikom 3/5(1=1) to 2/3(— ). In comparison, the Feter ex-
continuum of solvent. For simplicity, spherical cavities arepression carries a factor ofrff = 1/e(w)] to account for the
assumed. The response of a dielectric medium can be olmedium screening effect, which is 1/2 in this case. This
tained by solving for the reaction fiel®,,,(r), arising from  rather simple screening factor ofnf/not only overestimates
the multipoles qu) of the transition density of the the effect of a dielectric medium, but it is also not consistent
donor38-40 in its formulation, since the proper dielectric screening of a
dipole source is usually written as[ 3€(w)+ 1] instead of
l/e(w).

w—

A. Two molecules separated by solvent

Tl ar 1+ 1) [e(w)-1]
q)rxn(r;r>a):_|20 met) 2l+1 e(w)l+e(w)+I

B. Two molecules in a cavity

We now consider a second example, the case where the
X i VY n(6, ), (23)  two molecules are placed sufficiently close to each other in
the medium such that the cavities created by the two mol-
ecules are merged into a single cavity.
wherea denotes the radius of the spherical cavity, and the A charge—charge response functig(r,r’,w) can gen-
multipole momentyjy, is defined a¥ erally be obtained from dielectric solvation thedtyThe
dipole—dipole response function has been studied exten-
sively in Refs. 42 and 43, for example for solvents composed
D _ * 0T of neutral species, and a general solution for a spherical cav-
q'm_J Yim(0,4)1" pp(r)ar, (24 ity in a dielectric continuum medium is availabfe?* The
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interaction energy between two charggg,andq,, located
atr, andr, inside a spherical cavity is, according to Refs. 35
and 44,

q19
=T Q1O f (11, T), (28)
[ri—rs
where
* | I
A7 (e—1)(I+1) ryry,
f(rl’rZ)__.ZOmZ,. 21+1 (1+1)e+l a?*1t
XYn(61,61)Yim(62,02); (29

ain Eq. (29 denotes the radius of the cavityjs the dielec-

Hsu et al.

Case 1 Case 11

e(w)

FIG. 1. Sketch for the models used in obtaining results plotted in Fig. 2. The
two point dipoles are located &t0.8,0,0 and(0.1,0,0 in Cartesian coor-

dinates and the radius of the cavity is set to unity. The dipole moments are
of the same magnitude. For case |, the dipole moments are pointing along

tric constant of the medium, and the origin of the coordinatedhe x axis. For case lI, the dipoles are pointing along thexis, in the

is the center of the spherical cavity.

opposite direction.

The solvent-mediated energy transfer coupling of two

chromophore is

agcoun= [ dr [ drpfplr o), (30

wheref(r,r ', w) is defined similarly as in Eq29) except the
dielectric constant is replaced by the dielectric response at
the frequency of transitioa(w).

A simple model that provides some insight is a syste
with two transition dipoles inside a spherical cavity. Suppos
the two transition dipole;u{, ,/uI\ for the donor and acceptor
are located atp andr,, respectively. The expression in Eq.
(30) is modified for interactions between two point dipoles,

and the solvent modification component is
IBR(Coud = pb VoV A (Fp ,Fa ) iy (3D

The interaction between the two dipoles in vacuum, for com
parison, is(assuming the transition dipole moments are no
changed significantly by solvation, for simplicity
1
IBa(Coul = pup VoV a——— pa, (32)
Irp—ral

whereVy (or V,) is the gradient operator far, (ra). We

m
[S

direct couplingJ%A, enhancinghe overall coupling strength.

On the other hand, ipg lies parallel to the boundary sur-
face, the modification has the opposite sigereeningdown
the Coulomb coupling strength.

Using Egs.(31) and(32), we can calculate the ratio of
interaction energies in a dielectric medium to that in vacuum.
We illustrate this ratio with a pair of dipoles of the same
magnitude located at distances®ahd 0.5 from the center
of a spherical cavity, respectively, oriented either in the same
or opposite directions. Sketches of the models employed are
plotted in Fig. 1.

A simple model calculation indicates that coupling in a
medium is not always a screened Coulomb coupling, as
shown in Fig. 2. We can explain the trends in Fig. 2 using
the image charge approximatiéhReplacing the source di-

pole with two closely spaced point charges, one realizes that

he image dipole moment generated by a source dipole is in
the same direction if the source dipole is perpendicular to the
boundary surface, and the overall interaction of the system is
enhancedOn the other hand, if the source dipole lies paral-
lel to the surface, the image dipole is then in the opposite
direction, reducing the interaction of the source dipole with

have assumed that the transition dipoles are the same for the

molecules in vacuum as in solution so that E2y) is appli-
cable. The tensoVVAf(rp,ra,) in Eq. (31) can be cal-
culated using Eq.29) in spherical coordinates. Similarly, the
Coulomb potential 1f,—r,| can be expanded in spherical
coordinates:

o |

1 ar rl -
|rD_rA|_I:0 = 2|+lr>+l Im( D:¢D)
XYim(On,dp)- (33

Let us assume, without a loss of generality, thgt>r,.
(For the case wherey<r , we can simply switch the donor
and acceptor in the discussion belpWe first note that for
the two functions listed above in Eg9) and (33), all of
the the angular dependence and the radial dependencg for
(r.) are the same but fary (r-) the dependence has the
opposite slope. So if the transition dipole of the dowrthe
one that is closer to the cavity bound)aryzg, is parallel to

1.4
1.2 a—¢
- )
= ] ./'/‘/v
<> 1.0 1 3
— .
P ] "
g 08
= ] A
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FIG. 2. Ratio of the overall Coulomb coupling¥+J(™) in the medium to

the Coulomb coupling in vacuumi{) for two fixed transition dipoles as a
function of the dielectric constant. The Coulomb couplings are calculated
using Eqs(31) and(32). The two cases presented are for the dipole arrange-

the radial direction, then the dielectric medium modifies thements shown in Fig. 1. The solid line connecting the dots represents results

Coulomb coupling by adding a term of tisamesign to the

for case I, while the dotted line with triangles is for case II.
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